skip to main content


Search for: All records

Creators/Authors contains: "Burslem, David F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Flowering and fruiting phenology have been infrequently studied in the ever‐wet hyperdiverse lowland forests of northwestern equatorial Amazonía. These Neotropical forests are typically called aseasonal with reference to climate because they are ever‐wet, and it is often assumed they are also aseasonal with respect to phenology. The physiological limits to plant reproduction imposed by water and light availability are difficult to disentangle in seasonal forests because these variables are often temporally correlated, and both are rarely studied together, challenging our understanding of their relative importance as drivers of reproduction. Here we report on the first long‐term study (18 years) of flowering and fruiting phenology in a diverse equatorial forest, Yasuní in eastern Ecuador, and the first to include a full suite of on‐site monthly climate data. Using twice monthly censuses of 200 traps and >1000 species, we determined whether reproduction at Yasuní is seasonal at the community and species levels and analyzed the relationships between environmental variables and phenology. We also tested the hypothesis that seasonality in phenology, if present, is driven primarily by irradiance. Both the community‐ and species‐level measures demonstrated strong reproductive seasonality at Yasuní. Flowering peaked in September–November and fruiting peaked in March–April, with a strong annual signal for both phenophases. Irradiance and rainfall were also highly seasonal, even though no month on average experienced drought (a month with <100 mm rainfall). Flowering was positively correlated with current or near‐current irradiance, supporting our hypothesis that the extra energy available during the period of peak irradiance drives the seasonality of flowering at Yasuní. As Yasuní is representative of lowland ever‐wet equatorial forests of northwestern Amazonía, we expect that reproductive phenology will be strongly seasonal throughout this region.

     
    more » « less
  3. Abstract Aim

    Mapping tree species richness across the tropics is of great interest for effective conservation and biodiversity management. In this study, we evaluated the potential of full‐waveform lidar data for mapping tree species richness across the tropics by relating measurements of vertical canopy structure, as a proxy for the occupation of vertical niche space, to tree species richness.

    Location

    Tropics.

    Time period

    Present.

    Major taxa studied

    Trees.

    Methods

    First, we evaluated the characteristics of vertical canopy structure across 15 study sites using (simulated) large‐footprint full‐waveform lidar data (22 m diameter) and related these findings to in‐situ tree species information. Then, we developed structure–richness models at the local (within 25–50 ha plots), regional (biogeographical regions) and pan‐tropical scale at three spatial resolutions (1.0, 0.25 and 0.0625 ha) using Poisson regression.

    Results

    The results showed a weak structure–richness relationship at the local scale. At the regional scale (within a biogeographical region) a stronger relationship between canopy structure and tree species richness across different tropical forest types was found, for example across Central Africa and in South America [R2ranging from .44–.56, root mean squared difference as a percentage of the mean (RMSD%) ranging between 23–61%]. Modelling the relationship pan‐tropically, across four continents, 39% of the variation in tree species richness could be explained with canopy structure alone (R2 = .39 and RMSD% = 43%, 0.25‐ha resolution).

    Main conclusions

    Our results may serve as a basis for the future development of a set of structure–richness models to map high resolution tree species richness using vertical canopy structure information from the Global Ecosystem Dynamics Investigation (GEDI). The value of this effort would be enhanced by access to a larger set of field reference data for all tropical regions. Future research could also support the use of GEDI data in frameworks using environmental and spectral information for modelling tree species richness across the tropics.

     
    more » « less